

深圳市海凌科电子有限公司

HLK-LD1020 规格书

版本: V1.1 修订日期: 2024年3月25日

版权所有 ② 深圳市海凌科电子有限公司

目录

1.	产品简介	.1
2.	功能特性	.1
3.	应用场景	.1
4.	产品规格	.2
5.	外部配置电阻值与门限及延时时间关系	. 3
6.	感知范围区域	. 3
7.	引脚配置和功能说明	. 3
8.	配套的驱动电源设计注意事项	.4
9.	雷达模组测试和使用注意事项	.4
10	. 内置雷达模组的器件应用安装注意事项	. 4
11.	. 感知方向&光感器件	. 5
12	. 尺寸信息	.5
	. 历史修订记录	

1. 产品简介

HLK-LD1020 是一款基于 X 波段雷达芯片而设计的微/运动感知模组,中心频率为 10.525GHz。该模组设计采用定频、定向发射和接收天线(1T1R),集成中频解调、信号放大和数字处理等功能,具备延时设置、感知范围可调和光强度检测等能力。此产品具备不穿墙、抗干扰、体积小、杂波和高次谐波抑制效果好、高稳定性和一致性等优点。芯片内部集成算法,直接输出检测结果,可不需外挂单片机。模组脉冲供电模式下,功耗在微安级别。此模组主要针对低成本、低功耗应用领域。

该产品适合嵌入式隐蔽安装,不受温/湿度、油烟、水雾等影响,可广泛应用于各类灯具,如球泡灯、 筒灯、吸顶灯等,低功耗应用场景,如可视门铃、猫眼、门锁、低功耗摄像机等。

2. 功能特性

- 基于多普勒雷达原理
- 该产品定位为微/运动感知场景应用
- 感应距离: 挂高 2-4m(感应半径), 壁挂 12 米 (径向)
- 吸顶式安装, 3dB 波束宽度: 110°±10°
- 具备感光检测的能力(可选)

3. 应用场景

- 智慧照明:家居、办公、酒店、校园等
- 家电、电工电器等

4. 产品规格

TA=25℃

表 1 输入参数

符号	参数	测试条件	最小值	典型值	最大值	单位
VCC	工作电压	直流供电	4		15	V
I	工作电流	VCC=4~15V	0.1(脉冲供电)		16 (全供电)	mA

表 2 输出参数

符号	参数	测试条件	最小值	典型值	最大值	单位
fosc	微波频率	VCC=4~15V	10.40	10.525	10.65	GHz
Vout	输出电压		3.2	3.3	3.4	V
Tw	上电稳定时间		13	15	17	S

表 3 温湿度范围

符号	参数	测试条件	最小值	典型值	最大值	单位
T _A	工作温度		-20		+70	${\mathbb C}$
Тв	存储温度		-40		+85	$^{\circ}$
H _A	工作湿度		10		95	%
Нв	存储湿度		0		95	%

表 4 感知范围

符号	参数	测试条件	最小值	典型值	最大值	单位
	感应距离	挂高 3m	2		8	m
Td	延时时间			5		S
Ts	封锁时间			2		S

表 5 ESD 特性

符号	参数	测试条件	最小值	典型值	最大值	单位
	接触放电			2		kV
	空气放电			2		kV

- 常供电功耗最大 15mA,脉冲供电最大 110uA(R17 不焊接脉冲供电,焊接 2k 常供电)
- 光感可根据客户实际需求设定调整;
- 延时时间是触发后保持该状态的时间,默认值为5s,可根据需求设定;
- 封锁时间是指输出状态翻转后再次触发不响应的时间,默认值为 2s。

5. 外部配置电阻值与门限及延时时间关系

档位	外置电阻值 (R14)	灵敏度等级 (值越小灵敏度越高,距离越 远)	档位	外置电阻值 (R14)	灵敏度等级 (值越小灵敏度越高,距离越 远)
1	18K_1%	1	9	340K_1%	9
2	56K_1%	2	10	374K_1%	10
3	93.1K_1%	3(正面 6-8m)	11	422K_1%	11
4	130K_1%	4	12	464K_1%	12
5	169K_1%	5	13	510K_1%	13
6	210K_1%	6	14	560K_1%	14
7	255K_1%	7	15	619K_1%	15
8	294K_1%	8	16	680K_1%	16
档位	外置电阻值	延时时间	档位	外置电阻值	延时时间
	(R16)			(R16)	
1	18K_1%	5s	9	340K_1%	180s
2	56K_1%	10s	10	374K_1%	240s
3	93.1K_1%	15s	11	422K_1%	300s
4	130K_1%	20s	12	464K_1%	600s
5	169K_1%	30s	13	510K_1%	900s
6	210K_1%	45s	14	560K_1%	1200s
7	255K_1%	60s	15	619K_1%	1800s
8	294K_1%	120s	16	680K_1%	3600s

- 电阻 R14 是调感应门限的电阻,默认第三档; R14:阻值越大,感应距离越近; (默认 R14=93.1K)
- R16 是调延时时间的电阻,默认第一档 R16:阻值越大,延时时间约长。(默认 R16=20K)

6. 感知范围区域

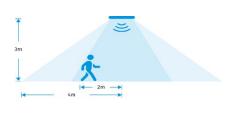


图 1 感知示意图

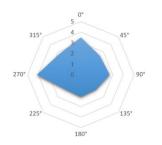


图 2 感知范围示意图

- 不同测试环境或运动目标,测试结果可能有差异;
- 金属外壳会对雷达电磁波有屏蔽作用,影响感知距离;
- 以上测试结果是在标准测试场地测 试得出,具体测试环境、条件,可 咨询相关技术人员。

7. 引脚配置和功能说明

表 6 引脚配置和功能说明

注: 3.3V 供电也可使用,但有几率导致 LDO 功耗过高,低功耗状态下电流不是 100uA。

8. 配套的驱动电源设计注意事项

- 务必采用输出电压、电流及纹波系数等都达标的驱动电源,驱动电源不稳定,电磁辐射太强,会造成雷达模组误报,无感知,循环自启等现象;
- 配套的驱动电源应在 4~15V,驱动电流不低于 1mA(或是 100mA),电源纹波幅度需控制在 100mV 以内,工频波 动幅度要小;
- 驱动电源和雷达模组装配时,应避免雷达模组底部或天线面,正对驱动电源模块,且应尽量远离驱动电源模块里面的整流桥、开关变压器等工频干扰大的器件,以防干扰微波信号;

9. 雷达模组测试和使用注意事项

- 在四周有墙壁或障碍物反射微波的情况下,感知距离和感知角度会有增益;在四周较空旷的情况下,感知距离和 角度会有衰减;
- 由于微波天线受到很小变化都可改变探测,所以请保护好天线,表面不要有金属物体(例如焊锡丝)等,避免影响感知距离;
- 轻拿轻放,避免激烈震动,雷达模组保持平整不变形;光感器件无遮挡和覆盖,特别是雷达模组上的感光元件 D1 周围,应避免有不透光的遮挡物;
- 雷达模组保持独立使用空间,四周空间保持有 2mm 以上的自由空间间隔;
- 通电后大约有 15s 初始化噪声分析时间,在此期间属于非正常感知工作;
- 如果雷达模组的感光器件上面有遮挡(例如外壳等),需要重新测试确定感光门限值;
- 产线测试和老化作业时,大量的雷达模组上电时若堆叠到一块的话,有可能会出现自激现象,请确保通电的雷达模组之间保持 50cm 以上的安全距离。

10. 内置雷达模组的器件应用安装注意事项

- 装配了雷达模组的器件,安装位置应远离通风管道、消防管道、排水管道、机械振动或有大型金属设备等强烈振动物体的地方,因为会影响雷达反射波和探测感知效果;
- 严禁带电作业,以免动作失误,接错,烧坏电路或触电;
- 避免安装在日晒雨淋的地方,防止损坏和影响使用寿命;
- 器件务必安装在远离电磁场的地方,以免电磁干扰产生误动作;也要安装在远离有物体固定转动或者摆动(例如电风扇,摇摆的树叶,风中晾晒衣服等)的地方,以免有误动作产生;
- 数个内置雷达模组的器件固定安装时,应保证各个器件之间的间距≥0.5m;
- 雷达微波模块的天线面建议距离产品外壳 3~5mm, 否则会影响感知距离;

图 3 天线面与产品外壳的距离

- 器件內置雷达模组后,建议水平或垂直放置,在有效的感知范围内,尽量避免面对面安装两个或者更多的內置雷 达模组的器件;
- 避免內置雷达模组的器件(例如灯具)附近,有其他光照物(例如应急灯,导向灯等干扰光源),以免造成器件(灯具) 內置感光判断失效,使得器件(灯具)不能正常工作(常灭,误判为白天);
- 使用了内置雷达模组的器件(如灯具)若一直工作(常亮),不能根据动目标探测进行开、关,则可能是雷达模组受到中频干扰,造成模组一直判断为有动目标在感知范围内活动。此时应关断电源,检查电源板的供电状态是否正常以及模组空间距离是否改变;
- 若以上问题还不能解决,请先断电和观察安装位置周围情况,先排除周围环境干扰因素的影响;重启电源后仍有问题,则考虑更换设备的驱动电源板,或者雷达模组再验证。

11. 感知方向&光感器件

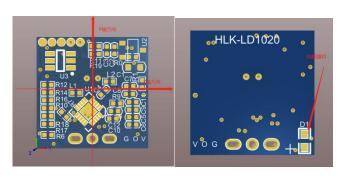


图 4 感知方向和光感器件

12. 尺寸信息

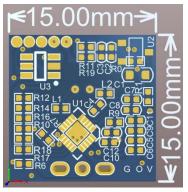


图 5 参考尺寸(15mm*15mm*2mm)

尺寸单位为 mm, V、O、G 接口顺序, 孔间距为 2.54mm, 孔径为 0.85mm。

13. 历史修订记录

版本号	修订范围	日 期
V1.0	初始版本。	2022年12月13日
V1.1	修改供电说明	2024年3月25日